Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
EMBO Mol Med ; 16(3): 575-595, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38366162

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening disease caused by a novel bunyavirus (SFTSV), mainly transmitted by ticks. With no effective therapies or vaccines available, understanding the disease's mechanisms is crucial. Recent studies found increased expression of programmed cell death-1 (PD-1) on dysfunctional T cells in SFTS patients. However, the role of the PD-1/programmed cell death-ligand 1 (PD-L1) pathway in SFTS progression remains unclear. We investigated PD-1 blockade as a potential therapeutic strategy against SFTSV replication. Our study analyzed clinical samples and performed in vitro experiments, revealing elevated PD-1/PD-L1 expression in various immune cells following SFTSV infection. An anti-PD-1 nanobody, NbP45, effectively inhibited SFTSV infection in peripheral blood mononuclear cells (PBMCs), potentially achieved through the mitigation of apoptosis and the augmentation of T lymphocyte proliferation. Intriguingly, subcutaneous administration of NbP45 showed superior efficacy compared to a licensed anti-PD-1 antibody in an SFTSV-infected humanized mouse model. These findings highlight the involvement of the PD-1/PD-L1 pathway during acute SFTSV infection and suggest its potential as a host target for immunotherapy interventions against SFTSV infection.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Animais , Humanos , Camundongos , Infecções por Bunyaviridae/tratamento farmacológico , Phlebovirus/fisiologia , Antígeno B7-H1 , Leucócitos Mononucleares , Receptor de Morte Celular Programada 1
2.
Ticks Tick Borne Dis ; 15(2): 102307, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38194758

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a bunyavirus that causes SFTS, with a case fatality rate of up to 30 %. The innate immune system plays a crucial role in the defense against SFTSV; however, the impact of viral propagation of STFSV on the innate immune system remains unclear. Although proteomics analysis revealed that the expression of the downregulator of transcription 1 (DR1) increased after SFTSV infection, the specific change trend and the functional role of DR1 during viral infection remain unelucidated. In this study, we demonstrate that DR1 was highly expressed in response to SFTSV infection in HEK 293T cells using qRT-PCR and Western blot analysis. Furthermore, viral replication significantly increased the expression of various TLRs, especially TLR9. Our data indicated that DR1 positively regulated the expression of TLRs in HEK 293T cells, DR1 overexpression highly increased the expression of numerous TLRs, whereas RNAi-mediated DR1 silencing decreased TLR expression. Additionally, the myeloid differentiation primary response gene 88 (MyD88)-dependent or TIR-domain-containing adaptor inducing interferon-ß (TRIF)-dependent signaling pathways were highly up- and downregulated by the overexpression and silencing of DR1, respectively. Finally, we report that DR1 stimulates the expression of TLR7, TLR8, and TLR9, thereby upregulating the TRIF-dependent and MyD88-dependent signaling pathways during the SFTSV infection, attenuating viral replication, and enhancing the production of type I interferon and various inflammatory factors, including IL-1ß, IL-6, and IL-8. These results imply that DR1 defends against SFTSV replication by inducing the expression of TLR7, TLR8, and TLR9. Collectively, our findings revealed a novel role and mechanism of DR1 in mediating antiviral responses and innate immunity.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Fosfoproteínas , Transdução de Sinais , Fatores de Transcrição , Animais , Humanos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Regulação para Baixo , Células HEK293 , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fosfoproteínas/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Fatores de Transcrição/metabolismo , Phlebovirus/fisiologia , Infecções por Bunyaviridae/imunologia , Infecções por Bunyaviridae/metabolismo , Infecções por Bunyaviridae/virologia
3.
J Virol ; 98(1): e0156823, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38054738

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with high case mortality rates, which is caused by Dabie bandavirus (DBV), a novel pathogen also termed as SFTS virus (SFTSV). Currently, no specific therapeutic drugs or vaccines are available for SFTS. Myxovirus resistance protein A (MxA) has been shown to inhibit multiple viral pathogens; however, the role of MxA in DBV infection is unknown. Here, we demonstrated that DBV stimulates MxA expression which, in turn, restricts DBV infection. Mechanistic target analysis revealed that MxA specifically interacts with the viral nucleocapsid protein (NP) in a manner independent of RNA. Minigenome reporter assay showed that in agreement with its targeting of NP, MxA inhibits DBV ribonucleoprotein (RNP) activity. In detail, MxA interacts with the NP N-terminal and disrupts the interaction of NP with the viral RNA-dependent RNA polymerase (RdRp) but not NP multimerization, the critical activities of NP for RNP formation and function. Furthermore, MxA N-terminal domain was identified as the functional domain inhibiting DBV infection, and, consistently, then was shown to interact with NP and obstruct the NP-RdRp interaction. Additionally, threonine 103 within the N-terminal domain is important for MxA inhibition to DBV, and its mutation (T103A) attenuates MxA binding to NP and obstruction of the NP-RdRp interaction. This study uncovers MxA inhibition of DBV with a series of functional and mechanistical analyses, providing insights into the virus-host interactions and probably helping inform the development of antiviral agents in the future.IMPORTANCEDBV/SFTSV is an emerging high-pathogenic virus. Since its first identification in China in 2009, cases of DBV infection have been reported in many other countries, posing a significant threat to public health. Uncovering the mechanisms of DBV-host interactions is necessary to understand the viral pathogenesis and host response and may advance the development of antiviral therapeutics. Here, we found that host factor MxA whose expression is induced by DBV restricts the virus infection. Mechanistically, MxA specifically interacts with the viral NP and blocks the NP-RdRp interaction, inhibiting the viral RNP activity. Further studies identified the key domain and amino acid residue required for MxA inhibition to DBV. Consistently, they were then shown to be important for MxA targeting of NP and obstruction of the NP-RdRp association. These findings unravel the restrictive role of MxA in DBV infection and the underlying mechanism, expanding our knowledge of the virus-host interactions.


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Proteínas do Nucleocapsídeo , Ribonucleoproteínas/metabolismo , RNA Polimerase Dependente de RNA , Febre Grave com Síndrome de Trombocitopenia/metabolismo , Febre Grave com Síndrome de Trombocitopenia/virologia , Phlebovirus/fisiologia , Interações Hospedeiro-Patógeno
4.
Mol Immunol ; 164: 1-6, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866135

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a new infectious disease caused by bunyavirus, and the critically cases conform to the definition of sepsis. In order to compare the differences between SFTS sepsis and non-SFTS sepsis, a retrospective analysis was performed. Thirty-seven SFTS sepsis and 96 non-SFTS sepsis patients were enrolled. The clinical characteristics, laboratory results were compared between the two groups and independent prognostic risk of mortality were investigated respectively. Compared with non-SFTS sepsis, SFTS cases had lower white blood cell, neutrophil and platelet counts, prolonged activated partial thromboplastin time and decreased fibrinogen, slightly elevated inflammatory indicators. Interleukin-6 (IL-6), and acute physiology and chronic health evaluation Ⅱ (APACHE II) score were independent prognostic risk factors in non-SFTS sepsis. The mortality risk of STFS sepsis was related to the viral clearance. There was no difference in viral load between SFTS survivors and non-survivors on admission. However, the differences were significant on 5th, 7th, 10th, and 14th day, and all SFTS non-survivors died within 14 days. Viral clearance rate on 7th day was an independent risk factor for mortality in SFTS sepsis. The mortality risk of STFS sepsis was related to the viral clearance rate.


Assuntos
Phlebovirus , Sepse , Febre Grave com Síndrome de Trombocitopenia , Trombocitopenia , Humanos , Phlebovirus/fisiologia , Estudos Retrospectivos , Febre
5.
Arch Toxicol ; 97(6): 1783-1794, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148319

RESUMO

Pathogens co-evolved with ticks to facilitate blood collection and pathogen transmission. Although tick saliva was recently found to be rich in bioactive peptides, it is still elusive which saliva peptide promotes virus transmission and which pathways are invovled. Here, we used a saliva peptide HIDfsin2 and a severe fever with thrombocytopenia syndrome virus (SFTSV) both carried by the tick Haemaphysalis longicornis to elucidate the relationship between tick saliva components and tick-borne viruses. HIDfsin2 was found to promote the replication of SFTSV in a dose-dependent manner in vitro. HIDfsin2 was further revealed to MKK3/6-dependently magnify the activation of p38 MAPK. The overexpression, knockdown and phosphorylation site mutation of p38α indicated that p38 MAPK activation facilitated SFTSV infection in A549 cells. Moreover, the blockade of p38 MAPK activation significantly suppressed SFTSV replication. Differently, HIDfsin2 or pharmacological inhibition of p38 MAPK activation had no effect on a mosquito-borne Zika virus (ZIKV). All these results showed that HIDfsin2 specifically promoted SFTSV replication through the MKK3/6-dependent enhancement of p38 MAPK activation. Our study provides a new perspective on the transmission of tick-borne viruses under natural conditions, and supports that the blockade of p38 MAPK activation can be a promising strategy against the mortal tick-borne virus SFTSV.


Assuntos
Phlebovirus , Carrapatos , Replicação Viral , Animais , Humanos , Proteínas Quinases p38 Ativadas por Mitógeno , Saliva , Transdução de Sinais , Carrapatos/virologia , Phlebovirus/fisiologia
6.
J Biol Chem ; 299(6): 104819, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37187292

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV), which has been reported in China, Korea, Japan, Vietnam, and Taiwan, is a causative agent of severe fever thrombocytopenia syndrome. This virus has a high mortality and induces thrombocytopenia and leukocytopenia in humans, cats, and aged ferrets, whereas immunocompetent adult mice infected with SFTSV never show symptoms. Anti-SFTSV antibodies have been detected in several animals-including goats, sheep, cattle, and pigs. However, there are no reports of severe fever thrombocytopenia syndrome in these animals. Previous studies have reported that the nonstructural protein NSs of SFTSV inhibits the type I interferon (IFN-I) response through the sequestration of human signal transducer and activator of transcription (STAT) proteins. In this study, comparative analysis of the function of NSs as IFN antagonists in human, cat, dog, ferret, mouse, and pig cells revealed a correlation between pathogenicity of SFTSV and the function of NSs in each animal. Furthermore, we found that the inhibition of IFN-I signaling and phosphorylation of STAT1 and STAT2 by NSs depended on the binding ability of NSs to STAT1 and STAT2. Our results imply that the function of NSs in antagonizing STAT2 determines the species-specific pathogenicity of SFTSV.


Assuntos
Interferon Tipo I , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Proteínas não Estruturais Virais , Idoso , Animais , Bovinos , Cães , Humanos , Camundongos , Furões , Interferon Tipo I/metabolismo , Phlebovirus/fisiologia , Febre Grave com Síndrome de Trombocitopenia/virologia , Ovinos , Transdução de Sinais , Suínos , Trombocitopenia/metabolismo , Proteínas não Estruturais Virais/metabolismo
7.
J Virol ; 97(3): e0001523, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36794941

RESUMO

Negative-strand RNA viruses (NSVs) represent one of the most threatening groups of emerging viruses globally. Severe fever with thrombocytopenia syndrome virus (SFTSV) is a highly pathogenic emerging virus that was initially reported in 2011 from China. Currently, no licensed vaccines or therapeutic agents have been approved for use against SFTSV. Here, L-type calcium channel blockers obtained from a U.S. Food and Drug Administration (FDA)-approved compound library were identified as effective anti-SFTSV compounds. Manidipine, a representative L-type calcium channel blocker, restricted SFTSV genome replication and exhibited inhibitory effects against other NSVs. The result from the immunofluorescent assay suggested that manidipine inhibited SFTSV N-induced inclusion body formation, which is believed to be important for the virus genome replication. We have shown that calcium possesses at least two different roles in regulating SFTSV genome replication. Inhibition of calcineurin, the activation of which is triggered by calcium influx, using FK506 or cyclosporine was shown to reduce SFTSV production, suggesting the important role of calcium signaling on SFTSV genome replication. In addition, we showed that globular actin, the conversion of which is facilitated by calcium from filamentous actin (actin depolymerization), supports SFTSV genome replication. We also observed an increased survival rate and a reduction of viral load in the spleen in a lethal mouse model of SFTSV infections after manidipine treatment. Overall, these results provide information regarding the importance of calcium for NSV replication and may thereby contribute to the development of broad-scale protective therapies against pathogenic NSVs. IMPORTANCE SFTS is an emerging infectious disease and has a high mortality rate of up to 30%. There are no licensed vaccines or antivirals against SFTS. In this article, L-type calcium channel blockers were identified as anti-SFTSV compounds through an FDA-approved compound library screen. Our results showed the involvement of L-type calcium channel as a common host factor for several different families of NSVs. The formation of an inclusion body, which is induced by SFTSV N, was inhibited by manidipine. Further experiments showed that SFTSV replication required the activation of calcineurin, a downstream effecter of the calcium channel. In addition, we identified that globular actin, the conversion of which is facilitated by calcium from filamentous actin, supports SFTSV genome replication. We also observed an increased survival rate in a lethal mouse model of SFTSV infection after manidipine treatment. These results facilitate both our understanding of the NSV replication mechanism and the development of novel anti-NSV treatment.


Assuntos
Infecções por Bunyaviridae , Cálcio , Phlebovirus , Animais , Camundongos , Actinas/metabolismo , Infecções por Bunyaviridae/virologia , Calcineurina/metabolismo , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Modelos Animais de Doenças , Phlebovirus/efeitos dos fármacos , Phlebovirus/fisiologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia , Baço/virologia , Carga Viral
8.
BMC Microbiol ; 22(1): 204, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987890

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) is an emerging tick-borne phlebovirus with a high fatality rate of 12-30%, which has an expanding endemic and caused thousands of infections every year. Central nervous system (CNS) manifestations are an important risk factor of SFTS outcome death. Further understanding of the process of how SFTSV invades the brain is critical for developing effective anti-SFTS encephalitis therapeutics. We obeserved changes of viral load in the brain at different time points after intraperitoneal infection of SFTSV in newborn C57/BL6 mice. The virus invaded the brain at 3 h post-infection (hpi). Notably, the viral load increased exponentially after 24 hpi. In addition, it was found that in addition to macrophages, SFTSV infected neurons and replicated in the brain. These findings provide insights into the CNS manifestations of severe SFTS, which may lead to drug development and encephalitis therapeutics.


Assuntos
Infecções por Bunyaviridae , Encefalite , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Trombocitopenia , Animais , Animais Recém-Nascidos , Encéfalo , Infecções por Bunyaviridae/epidemiologia , Camundongos , Neurônios , Phlebovirus/fisiologia , Trombocitopenia/epidemiologia
9.
Int J Mol Med ; 50(3)2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35856413

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) has been acknowledged as an emerging infectious disease that is caused by the SFTS virus (SFTSV). The main clinical features of SFTS on presentation include fever, thrombocytopenia, leukocytopenia and gastrointestinal symptoms. The mortality rate is estimated to range between 5­30% in East Asia. However, SFTSV infection is increasing on an annual basis globally and is becoming a public health problem. The transmission cycle of SFTSV remains poorly understood, which is compounded by the pathogenesis of SFTS not being fully elucidated. Since the mechanism underlying the host immune response towards SFTSV is also unclear, there are no effective vaccines or specific therapeutic agents against SFTS, with supportive care being the only realistic option. Therefore, it is now crucial to understand all aspects of the host­virus interaction following SFTSV infection, including the antiviral states and viral evasion mechanisms. In the present review, recent research progress into the possible host immune responses against SFTSV was summarized, which may be useful in designing novel therapeutics against SFTS.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Trombocitopenia , Infecções por Bunyaviridae/tratamento farmacológico , Infecções por Bunyaviridae/patologia , Humanos , Phlebovirus/fisiologia , Trombocitopenia/patologia
10.
Emerg Microbes Infect ; 11(1): 1672-1682, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35603493

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV), an emerging tick-borne bunyavirus, causes mild-to-moderate infection to critical illness or even death in human patients. The effect of virus variations on virulence and related clinical significance is unclear. We prospectively recruited SFTSV-infected patients in a hotspot region of SFTS endemic in China from 2011 to 2020, sequenced whole genome of SFTSV, and assessed the association of virus genomic variants with clinical data, viremia, and inflammatory response. We identified seven viral clades (I-VII) based on phylogenetic characterization of 805 SFTSV genome sequences. A significantly increased case fatality rate (32.9%) was revealed in one unique clade (IV) that possesses a specific co-mutation pattern, compared to other three common clades (I, 16.7%; II, 13.8%; and III, 11.8%). The phenotype-genotype association (hazard ratios ranged 1.327-2.916) was confirmed by multivariate regression adjusting age, sex, and hospitalization delay. We revealed a pronounced inflammation response featured by more production of CXCL9, IL-10, IL-6, IP-10, M-CSF, and IL-1ß, in clade IV, which was also related to severe complications. We observed enhanced cytokine expression from clade IV inoculated PBMCs and infected mice. Moreover, the neutralization activity of convalescent serum from patients infected with one specified clade was remarkably reduced to other viral clades. Together, our findings revealed a significant association between one specific viral clade and SFTS fatality, highlighting the need for molecular surveillance for highly lethal strains in endemic regions and unravelled the importance of evaluating cross-clade effect in development of vaccines and therapeutics.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Animais , Genômica , Humanos , Camundongos , Phlebovirus/fisiologia , Filogenia
11.
Viruses ; 14(2)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35215849

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tickborne disease in East Asia that is causing high mortality. The Gn glycoprotein of the SFTS virus (SFTSV) has been considered to be an essential target for virus neutralization. However, data on anti-Gn glycoprotein antibody kinetics are limited. Therefore, we investigated the kinetics of Gn-specific antibodies compared to those of nucleocapsid protein (NP)-specific antibodies. A multicenter prospective study was performed in South Korea from January 2018 to September 2021. Adult patients with SFTS were enrolled. Anti-Gn-specific IgM and IgG were measured using an enzyme-linked immunosorbent assay. A total of 111 samples from 34 patients with confirmed SFTS were analyzed. Anti-Gn-specific IgM was detected at days 5-9 and peaked at day 15-19 from symptom onset, whereas the anti-NP-specific IgM titers peaked at days 5-9. Median seroconversion times of both anti-Gn- and NP-specific IgG were 7.0 days. High anti-Gn-specific IgG titers were maintained until 35-39 months after symptom onset. Only one patient lost their anti-Gn-specific antibodies at 41 days after symptom onset. Our data suggested that the anti-Gn-specific IgM titer peaked later than anti-NP-specific IgM, and that anti-Gn-specific IgG remain for at least 3 years from symptom onset.


Assuntos
Anticorpos Antivirais/sangue , Glicoproteínas/imunologia , Phlebovirus/imunologia , Febre Grave com Síndrome de Trombocitopenia/imunologia , Proteínas Virais/imunologia , Adulto , Citocinas/sangue , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Cinética , Masculino , Proteínas do Nucleocapsídeo/imunologia , Phlebovirus/fisiologia , Estudos Prospectivos , Febre Grave com Síndrome de Trombocitopenia/virologia , Carga Viral
12.
Nat Commun ; 12(1): 5629, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561445

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a novel tick-borne infectious disease caused by a new type of SFTS virus (SFTSV). Here, a longitudinal sampling study is conducted to explore the differences in transcript levels after SFTSV infection, and to characterize the transcriptomic and epigenetic profiles of hospitalized patients. The results reveal significant changes in the mRNA expression of certain genes from onset to recovery. Moreover, m6A-seq reveals that certain genes related with immune regulation may be regulated by m6A. Besides the routine tests such as platelet counts, serum ALT and AST levels testing, distinct changes in myocardial enzymes, coagulation function, and inflammation are well correlated with the clinical data and sequencing data, suggesting that clinical practitioners should monitor the above indicators to track disease progression and guide personalized treatment. In this study, the transcript changes and RNA modification may lend a fresh perspective to our understanding of the SFTSV and play a significant role in the discovery of drugs for effective treatment of this disease.


Assuntos
Epigênese Genética , Epigenômica/métodos , Perfilação da Expressão Gênica/métodos , Febre Grave com Síndrome de Trombocitopenia/genética , Transcriptoma , Idoso , Alanina Transaminase/sangue , Antivirais/uso terapêutico , Aspartato Aminotransferases/sangue , Creatinina/sangue , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Phlebovirus/efeitos dos fármacos , Phlebovirus/fisiologia , RNA-Seq/métodos , Amostragem , Febre Grave com Síndrome de Trombocitopenia/tratamento farmacológico , Febre Grave com Síndrome de Trombocitopenia/virologia
13.
Viruses ; 13(8)2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34452524

RESUMO

Sand flies transmit Leishmania infantum, which is responsible for causing leishmaniasis, as well as many phleboviruses, including the human pathogenic Toscana virus. We screened sand flies collected from a single site between 2017 and 2020 for the presence of both phleboviruses and Leishmania. The sand flies were sampled with attractive carbon dioxide traps and CDC light traps between May and October. We collected more than 50,000 sand flies; 2826 were identified at the species level as Phlebotomus perfiliewi (98%) or Phlebotomus perniciosus (2%). A total of 16,789 sand flies were tested in 355 pools, and phleboviruses were found in 61 pools (6 Toscana virus positive pools, 2 Corfou virus positive pools, 42 Fermo virus positive pools, and 7 Ponticelli virus positive pools, and 4 unidentified phlebovirus positive pools). Leishmania was found in 75 pools and both microorganisms were detected in 16 pools. We isolated nine phleboviruses from another 2960 sand flies (five Ponticelli viruses and for Fermo viruses), not tested for Leishmania; the complete genome of a Fermo virus isolate was sequenced. The simultaneous detection in space and time of the Fermo virus and L. infantum is evidence that supports the co-circulation of both microorganisms in the same location and partial overlap of their cycles. A detailed characterization of the epidemiology of these microorganisms will support measures to limit their transmission.


Assuntos
Insetos Vetores/parasitologia , Insetos Vetores/virologia , Leishmania infantum/isolamento & purificação , Phlebotomus/parasitologia , Phlebotomus/virologia , Phlebovirus/isolamento & purificação , Animais , Humanos , Insetos Vetores/classificação , Insetos Vetores/genética , Itália/epidemiologia , Leishmania infantum/genética , Leishmania infantum/fisiologia , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/transmissão , Phlebotomus/classificação , Phlebotomus/genética , Febre por Flebótomos/epidemiologia , Febre por Flebótomos/transmissão , Febre por Flebótomos/virologia , Phlebovirus/genética , Phlebovirus/fisiologia , Filogenia
14.
PLoS Negl Trop Dis ; 15(8): e0009687, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34407077

RESUMO

With global warming and lush forest change, vector-borne infections are expected to increase in the number and diversity of agents. Since the first report of severe fever with thrombocytopenia syndrome (SFTS) in 2013, the number of reported cases has increased annually in South Korea. However, although tick-borne encephalitis virus (TBEV) was detected from ticks and wild rodents, there is no human TBE case report in South Korea. This study aimed to determine the seroprevalence of TBEV and SFTS virus (SFTSV) among forest and field workers in South Korea. From January 2017 to August 2018, a total 583 sera were obtained from the forest and field workers in South Korea. IgG enzyme-linked immunosorbent assay (ELISA) and neutralization assay were conducted for TBEV, and indirect immunofluorescence assay (IFA) and neutralization assay were performed for SFTSV. Seroprevalence of TBEV was 0.9% (5/583) by IgG ELISA, and 0.3% (2/583) by neutralization assay. Neutralizing antibody against TBEV was detected in a forest worker in Jeju (1:113) and Hongcheon (1:10). Only 1 (0.2%) forest worker in Yeongju was seropositive for SFTSV by IFA (1:2,048) and neutralizing antibody was detected also. In conclusion, this study shows that it is necessary to raise the awareness of physicians about TBEV infection and to make efforts to survey and diagnose vector-borne diseases in South Korea.


Assuntos
Anticorpos Antivirais/sangue , Encefalite Transmitida por Carrapatos/sangue , Encefalite Transmitida por Carrapatos/epidemiologia , Febre Grave com Síndrome de Trombocitopenia/sangue , Febre Grave com Síndrome de Trombocitopenia/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/virologia , Feminino , Agricultura Florestal/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Phlebovirus/genética , Phlebovirus/imunologia , Phlebovirus/fisiologia , República da Coreia/epidemiologia , Estudos Soroepidemiológicos , Febre Grave com Síndrome de Trombocitopenia/virologia , Doenças Transmitidas por Vetores/sangue , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/virologia , Adulto Jovem
15.
Viruses ; 13(7)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201811

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an acute febrile illness characterized by fever, leukopenia, thrombocytopenia, and gastrointestinal symptoms such as diarrhea, nausea, and vomiting resulting from infection with the SFTS virus (SFTSV). The SFTSV is transmitted to humans by tick bites, primarily from Haemaphysalis longicornis, Amblyomma testudinarium, Ixodes nipponensis, and Rhipicephalus microplus. Human-to-human transmission has also been reported. Since the first report of an SFTS patient in China, the number of patients has also been increasing. The mortality rate of patients with SFTS remains high because the disease can quickly lead to death through multiple organ failure. In particular, an average fatality rate of approximately 20% has been reported for SFTS patients, and no treatment strategy has been established. Therefore, effective antiviral agents and vaccines are required. Here, we aim to review the epidemiology, clinical manifestations, laboratory diagnosis, and various specific treatments (i.e., antiviral agents, steroids, intravenous immunoglobulin, and plasma exchange) that have been tested to help to cope with the disease.


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Animais , Antivirais/uso terapêutico , Humanos , Phlebovirus/genética , Phlebovirus/fisiologia , Phlebovirus/ultraestrutura , Febre Grave com Síndrome de Trombocitopenia/diagnóstico , Febre Grave com Síndrome de Trombocitopenia/epidemiologia , Febre Grave com Síndrome de Trombocitopenia/terapia , Febre Grave com Síndrome de Trombocitopenia/transmissão , Carrapatos/virologia
16.
Viruses ; 13(5)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064604

RESUMO

Viral non-structural proteins, such as NSs of the newly emerging severe fever with thrombocytopenia syndrome virus, are well established virulence factors, mediating viral pathogenesis and disease progression through various mechanisms. NSs has been described as a potent interferon antagonist and NF-κB agonist, two divergent signaling pathways in many immune responses upon a viral encounter. In this review, we highlight the many mechanisms used by NSs on the host that promote viral replication and hyper-inflammation. Understanding these host-pathogen interactions is crucial for antiviral therapy development.


Assuntos
Suscetibilidade a Doenças , Phlebovirus/fisiologia , Febre Grave com Síndrome de Trombocitopenia/etiologia , Proteínas não Estruturais Virais/metabolismo , Animais , Biomarcadores , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Humanos , Febre Grave com Síndrome de Trombocitopenia/complicações , Febre Grave com Síndrome de Trombocitopenia/metabolismo , Replicação Viral
17.
Exp Mol Med ; 53(5): 713-722, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953322

RESUMO

An emerging infectious disease first identified in central China in 2009, severe fever with thrombocytopenia syndrome (SFTS) was found to be caused by a novel phlebovirus. Since SFTSV was first identified, epidemics have occurred in several East Asian countries. With the escalating incidence of SFTS and the rapid, worldwide spread of SFTSV vector, it is clear this virus has pandemic potential and presents an impending global public health threat. In this review, we concisely summarize the latest findings regarding SFTSV, including vector and virus transmission, genotype diversity and epidemiology, probable pathogenic mechanism, and clinical presentation of human SFTS. Ticks most likely transmit SFTSV to animals including humans; however, human-to-human transmission has been reported. The majority of arbovirus transmission cycle includes vertebrate hosts, and potential reservoirs include a variety of both domestic and wild animals. Reports of the seroprevalence of SFTSV in both wild and domestic animals raises the probability that domestic animals act as amplifying hosts for the virus. Major clinical manifestation of human SFTS infection is high fever, thrombocytopenia, leukocytopenia, gastrointestinal symptoms, and a high case-fatality rate. Several animal models were developed to further understand the pathogenesis of the virus and aid in the discovery of therapeutics and preventive measures.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Suscetibilidade a Doenças , Phlebovirus/fisiologia , Febre Grave com Síndrome de Trombocitopenia/epidemiologia , Febre Grave com Síndrome de Trombocitopenia/virologia , Animais , Controle de Doenças Transmissíveis , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/transmissão , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Variação Genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Phlebovirus/classificação , Vírus Reordenados , Estudos Soroepidemiológicos , Febre Grave com Síndrome de Trombocitopenia/prevenção & controle , Febre Grave com Síndrome de Trombocitopenia/transmissão , Avaliação de Sintomas , Zoonoses Virais
18.
Front Immunol ; 12: 576640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025635

RESUMO

Aspergillus-related disease was confirmed to be associated with immune disorders in patients, severe patients with severe fever with thrombocytopenia syndrome (SFTS) infected by novel phlebovirus were confirmed to have severe immune damage including cellular immunosuppression and cytokine storms. Secondary invasive pulmonary aspergillosis (IPA) in severe SFTS patients can increase fatality rate. This study investigated early-warning predictive factors of secondary IPA in severe SFTS patients. Receiver operating characteristic analysis was used to assess the value of immune parameters to predict IPA in SFTS patients. The cut-off values of CD4+ and CD8+ T-cell counts to predict IPA were 68 and 111 cells/mm3, with sensitivities of 82.6% and 72%, and specificities of 56.7% and 83.3%, respectively. Cut-off values of IL-6, TNF-α, IL-8, and IL-10 to predict IPA incidence in critically ill SFTS patients were 99 pg/mL, 63 pg/mL, 120 pg/mL, and 111 pg/mL, with sensitivities of 90.0%, 86.7%, 83.3% and 90.0% and specificities of 80.4%, 71.7%, 82.6% and 65.2%, respectively. Lower CD4+ and CD8+ T-cells counts, higher levels of IL-6, TNF-α, IL-8 and IL-10, higher incidence of pancreatic and renal damage, early antibacterial therapy of carbapenems, and intensive care unit admission were risk factors of IPA in SFTS patients. Multivariate logistic regression analysis indicated counts of CD4+ T-cells <68 cells/mm3 combined with CD8+ T-cells <111 cells/mm3 (odds ratio [OR] 0.218, 95% confidence interval [CI] 0.059-0.803, p=0.022), IL-6 >99 pg/ml combined with IL-10 >111 pg/ml (OR 17.614, 95% CI 2.319-133.769, p=0.006), and brain natriuretic peptide level >500 pg/ml (OR 13.681, 95% CI 1.994-93.871, p=0.008) were independent risk factors for IPA in SFTS patients. The mortality in the IPA group was significantly higher than in the non-IPA group (p=0.001). Early antifungal treatment of IPA patients was significantly associated with improved survival (log-rank, p=0.022). Early diagnosis of IPA and antifungal treatment can improve the prognosis of SFTS patients. Besides, we speculate SFTS may be as a host factor for IPA.


Assuntos
Aspergilose Pulmonar Invasiva/imunologia , Febre por Flebótomos/imunologia , Phlebovirus/imunologia , Febre Grave com Síndrome de Trombocitopenia/imunologia , Idoso , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Diagnóstico Precoce , Feminino , Humanos , Aspergilose Pulmonar Invasiva/diagnóstico , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Febre por Flebótomos/diagnóstico , Febre por Flebótomos/virologia , Phlebovirus/fisiologia , Prognóstico , Curva ROC , Fatores de Risco , Febre Grave com Síndrome de Trombocitopenia/diagnóstico , Febre Grave com Síndrome de Trombocitopenia/virologia , Índice de Gravidade de Doença , Análise de Sobrevida
19.
PLoS Negl Trop Dis ; 15(4): e0009037, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33930022

RESUMO

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) was listed as one of the most severe infectious disease by world health organization in 2017. It can mostly be transmitted by tick bite, while human-to-human transmission has occurred on multiple occasions. This study aimed to explore the epidemiological and clinical characteristics and make risk analysis of SFTS human-to-human transmission. METHODS: Descriptive and spatial methods were employed to illustrate the epidemiological and clinical characteristics of SFTS human-to-human transmission. The risk of SFTS human-to-human transmission was accessed through secondary attack rate (SAR) and basic reproductive number (R0). Logistic regression analysis was used to identify the associated risk factors. RESULTS: A total of 27 clusters of SFTS human-to-human transmission were reported in China and South Korea during 1996-2019. It mainly occurred among elder people in May, June and October in central and eastern China. The secondary cases developed milder clinical manifestation and better outcome than the index cases. The incubation period was 10.0 days (IQR:8.0-12.0), SAR was 1.72%-55.00%, and the average R0 to be 0.13 (95%CI:0.11-0.16). Being blood relatives of the index case, direct blood/bloody secretion contact and bloody droplet contact had more risk of infection (OR = 6.35(95%CI:3.26-12.37), 38.01 (95%CI,19.73-73.23), 2.27 (95%CI,1.01-5.19)). CONCLUSIONS: SFTS human-to-human transmission in China and South Korea during 1996-2019 had obvious spatio-temporal distinction. Ongoing assessment of this transmission risk is crucial for public health authorities though it continues to be low now.


Assuntos
Febre/epidemiologia , Phlebovirus/fisiologia , Febre Grave com Síndrome de Trombocitopenia/transmissão , Adulto , Idoso , China , Busca de Comunicante , Feminino , Febre/complicações , Febre/virologia , Humanos , Incidência , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Phlebovirus/genética , Phlebovirus/isolamento & purificação , República da Coreia , Medição de Risco , Fatores de Risco , Febre Grave com Síndrome de Trombocitopenia/epidemiologia , Febre Grave com Síndrome de Trombocitopenia/virologia , Análise Espaço-Temporal
20.
Front Immunol ; 12: 595140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708197

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne virus that causes hemorrhagic fever. Previous studies showed that SFTSV-infected patients exhibited elevated levels of pro-inflammatory cytokines like interleukin-1ß (IL-1ß), indicating that SFTSV infection may activate inflammasomes. However, the detailed mechanism remains poorly understood. Herein, we found that SFTSV could stimulate the IL-1ß secretion in the infected human peripheral blood mononuclear cells (PBMCs), human macrophages, and C57/BL6 mice. We demonstrate that the maturation and secretion of IL-1ß during SFTSV infection is mediated by the nucleotide and oligomerization domain, leucine-rich repeat-containing protein family, pyrin-containing domain 3 (NLRP3) inflammasome. This process is dependent on protease caspase-1, a component of the NLRP3 inflammasome complex. For the first time, our study discovered the role of NLRP3 in response to SFTSV infection. This finding may lead to the development of novel drugs to impede the pathogenesis of SFTSV infection.


Assuntos
Interações Hospedeiro-Patógeno , Inflamassomos/metabolismo , Interleucina-1beta/biossíntese , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Phlebovirus/fisiologia , Febre Grave com Síndrome de Trombocitopenia/metabolismo , Febre Grave com Síndrome de Trombocitopenia/virologia , Animais , Caspase 1/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Febre Grave com Síndrome de Trombocitopenia/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...